- Home
- Standard 11
- Mathematics
જો $\left( {1 + ax + b{x^2}} \right){\left( {1 - 2x} \right)^{18}}$ ના વિસ્તરણમાં ${x^3}$ અને ${x^4}$ બંનેના સહગુણકો શૂન્ય હોય, તો $ (a,b) =$ ___________.
($14$,$\frac{{272}}{3}$)
($16$,$\frac{{272}}{3}$)
($16$,$\frac{{251}}{3}$)
($14$,$\frac{{251}}{3}$)
Solution
In the expansion of $\left(1+a x+b x^{2}\right)(1-2 x)^{18},$
Coefficient of $x^{3}$ in $\left(1+a x+b x^{2}\right)(1-2 x)^{18}$
$=$ Coefficient of $x^{3}$ in $(1-2 x)^{18}$
${+\text { Coefficient of } x^{2} \text { in a }(1-2 x)^{\text {18 }}}$
${\text { + Coefficient of } x \text { in } b(1-2 x)^{\text {18 }}}$
$=-^{18} \mathrm{C}_{3} \cdot 2^{3}+\mathrm{a}^{18} \mathrm{C}_{2} \cdot 2^{2}-\mathrm{b}^{18} \mathrm{C}_{1} \cdot 2$
$\because-^{18} C_{3} \cdot 2^{3}+a^{18} C_{2} \cdot 2^{2}-b^{18} C_{1} \cdot 2=0$
$\Rightarrow \frac{18 \times 17 \times 16}{3 \times 2} \cdot 8+a \cdot \frac{18 \times 17}{2} 2^{2}-b \cdot 18 \cdot 2=0$
$\Rightarrow 17 a-b=\frac{34 \times 16}{3}……….(i)$
Similarly, coefficient of $x^{4}$
$^{18} \mathrm{C}_{4} \cdot 2^{4}-\mathrm{a} \cdot^{18} \mathrm{C}_{3} 2^{3}+b \cdot^{18} \mathrm{C}_{2} \cdot 2^{2}=0$
$32 a-32 b=240……….(ii)$
On solving Eqs. $(i)$ and $(ii)$, we get
$a=16 \text { and } b=\frac{272}{3}$